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ABSTRACT

Recent developmeuts in the application of spectral methods to two-

dimensional compressible flows are reviewed. A brief introduction to spectral

methods -- their history and especially their implementation -- is provided.

The stress is on those techniques relevant to trsnsonic flow computation. The

spectral multlgrid iterative methods are discussed with ap[lication to the

transonic full potential equation• Discontinuous solutions of the F_ler

equations are considered. The key element is the shock fitting technique

which is briefly explained.
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I. INTRODUCTION

Spectral methods have their roots in approximation

theory. They are based on representations of the solution to

a problem by a finite series of global (and preferably ortho- ..,

gonal) functions. The expansion coefficients are usually re-

ferred to as spectra, and hence this technique is called the

spectral method. All the derivatives of the solution are ap-

proximated by the corresponding derivatives of the finite

series expansion. Under the right circumstances such high-

order approximations can produce extremely accurate numerical

solutions. There are three versions of spectral methods:

spectral Galerkln, spectral tau, and spectral collocation. An

extended discussion oE each of these versions is given in [I].

The first serious application of spectral methods to

fluid dynamics used the Galerkin approach: the sola=lon was

expanded in a series of functions satisfying the boundary con-

ditions and the calculation was performed entirely In terms of

the expansion coefflcients. Already in lq54 Silberman [2]

used them for meteorological modelling. The numerous investi-

, gations which followed S£1berman's work established the feasi-

bility of the spectral method for low resolution calculations.

In particular, Ellsaesser [3] showed that for the simple

b,_[anced barotropic model the efficiency of a low resolution

spectral method was competitive with the then available low

cesolution finite difference methods. However, the cost of

these early spectral C,alerkin methods soared to a prohibitive

• level as the number of expansion functions (and hence the

resolution) increased. The high cost was due to the stralght-

, forward manner in which the c_avolution sums arising from the
nonlinear terms were evaluated.

'_

\ The breakthrough came when Orszag [4], [5] (and also
Eliasen, et al. [6]) proposed a transform method for handling

the convolution sums This change so improved the efficiency

i
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of spectral methods that they became practical for high-

resolution calculatio,,s, even in three dimensions. Indeed,

the accuracy of spectral Galerkln methods is so great,

especially in terms of their extremely favorable phase errors,

that they are now routinely used in numerical weather predic-

"" tion. They have also been profita01y applied to the simula-

tion of homogeneous, Isotropic turbule_ice [7].

The spectral tau method was devised by Lanczos [8]. Its

principal difference from the spectral Galerkln method lies in

the treatment of boundary conditions. Lanczos used Chebyshev

polynomials as the expansion functions for solving linear

ordinary differential equations with rational coefflcients.

Orszag [9], [I0] has applied this metnod to certain fluid

dynamicn problems.

For many problems, especially nonlinear ones, the

spectral collocation method is the easiest to implement as

well as the most efflcient. The earliest investigations of

this method are those of Krelss and Ollger [II], (who called

it the Fourier method) and Orszag [6], [12] (who term¢ it

pseudospectral). Thus far this has been the only type of spec-

tral method yet applied to transonic problems. The present

discussion will be confined to spectral collocation methods,

with all future references to spectral methods implicitly re-

ferring to this specific type.

Spectral calculations of compressible flows have only

been performed in the last few years. The initial investiga-
tio,,_ were for one-dimenslonal flows. These were carried out

by Zang and Nussalnl [13], Gottlieb, et al. [14], and Taylor, !

et el. [15]. Some promising two-dlmenslonal transonic results

have been obtained recently for the full potential equation by

Streett [16] and Streett, at al [17] and for the Euler equa-

tions by Salas, et al. [18] and Nussainl, et al. [19]. This

_ article will describe the details of the spectral methods em-

ployed in these two-dlmenslonal calculations and will present i
some representative results. Since spectral methods are a

novel approach to transonic flow computations, a basic intro- i

duction to their properties and implementation will be pre- i
sented first.

2, I_DAMI_ALS OF SIM_C_RAL KR'I_ODS

• For problems with periodic boundary conditions spectral

k methods based upon Fourier series are the obvious choice. If
the boundary conditions are Dirlchlet or Neumann, then Cheby-

shev polynomials are usually employed. For many problems an

appropriate spectral method can produce a rapidly convergent
approximation. The particular choices mentioned above have

the added advantage of efficient implementation via the _sst
Fourier Transform. This section will furnish the details

1983025576-004
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necessary for implementing these spect}al methods. To hegln

wlth, however, the convergence properties of spectral methods
will be Illustrated with two eleme tary examples. The first

of these has some of the characteristics of the steady poten-
tial calculations described In Section 4, whereas the second

Is relevant to the time-dependent F_,ler solutions of Section

2.1. A One-dfmenslonal Elliptic Problem

A major reason for the appeal of spectral methods Is

their potential for rapidly convergent approximations. The

_ourler series expansion over [0,2_] of the function

3 (1)u(x) = 5 - 4 cos x

provides a simple illustration. It is

u(x) = _ Ukelkx, (2)

where

i uk = 2 Ikl. (3)
.+

The approximation obtained by truncating the Fourier series,

N/_-I ~ ikxUN(X) = uke , (4)
k=-N/2+1

satisfies -(_)N

" fuN(x) - u(x) I < 4e • (5)

It converges exponentially fast, i.e.,

NPluN(x)- u(x)l "+0 as N + ® (6)

for all positive integers p. Thls property of exponential

', convergence Is exhibited by the truncated Fourier series of
any periodic function which is infinitely dlfferentlable. The

" rapid decay of the Fourier series of such a function follows

from repeated Integratlons-by-parts: Let u(x) be periodic '_
and ins-initely differentlable on [0,2_]. Its Fourier coef- --.
flcients are given by

,_ ,
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2"

~ I j u(x) e-ikXdx. (7)Uk = 2"-'_
0

A single integration-by-parts yields
II

~ 1 -ikXu( i 2_+ 1 2_Uk = (-ik----_e x) _-_ f u" (x)e-lkXdx. (8)0 0

The boundary term vanishes because of the periodicity require-

ment. The remaining integral is o(I) as k + " by the

Riemann-Lebesque Lemma because of the dlfferentlabillty condl-

tion. Thus, a single integration lets us conclude that

Uk _ o(k-l). Clearly, p integrations produce Uk" o(k-P).
Note that both the periodicity and dlfferentiabllity condi-

tions are necessary for this argument. If either fails, then

the rate of convergence is algebraic.

A Fourier spectral method for a differential equation

makes use of some finite Fourier seLies representation of the

solution. This series will be related to, but different from,

the truncated Fourier series of Eq. (4). The details are fur-

nlshed in Section 2.3. Consider the differential equation

d2u
--- u = f (9)

, dx 2

on [0,2_] with periodic boundary conditions. Suppose that

f is chosen so that the exact solution is given by Eq (I).

Applied to this problem the spectral method yields the results

shown _n the third column of Table I. The second column gives
the results of the truncated Fourier series and the last col-

, umn reports the results for a second-order finite difference

method. Note that the bound given by Eq. (5) for the trunca-

ted Fourier series Is sharp-- the entries in the second col-

umn agree precisely with this bound until N is so large that

round-off error predominates. (These calculations were per-

formed on s CDC Cyber-175, which has 14 significant dlgi_s.)

The correct N = 128 and N = 256 entries are 2.17(-19) and

1.18(-38), reepectlvely. The exponential converpence of the

truncated Fourier series is evident. The spectral method per-

forms nearly as well. (In fact, its maximum error for N =, 32

and N - 64 is considerably lower, but this is due to a can-

cellation of error. In an RMS sense these two respective

, truncated series and Fourier spectral errors are wlthiu sever-

., al percent.) Only at very low resolution is the spectral

method substantially worse than the truncated series. But, of

course, the major point of this example is the decided superi-

ority of the spectral method over the second-order finite dif-

ference approximation.

i 7 ''
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Table I. _la_tm_m _rror for a 1-4) Periodic Problem

Truncated Fourier Finite

" N Series Spectral Difference

4 I.00 (0) 4.42 (0) 6.28 (0)

8 2.50 (-1) 1.28 (0) 1.98 (0)
16 1.56 (-2) 3.15 (-2) 2.02 (-1)

32 6.10 (-5) 3.46 (-5) 3.61 (-2)
64 9.31 (-10) 4.89 (-10) 8.65 (-3)

128 5.68 (-14) 7.11 (-14) 2.14 (-3)
256 5.68 (-14) 7.11 (-14) 5.34 (-4)

R t

2.2. A One-dlmenslonal _yperbollc Problem

Spectral methods for tlme-dependent problems can also ex-

hibit exponential convergence Indeed, spectral methods have
thus far made a greater impact on evolution equations than on

steady-state ones. A simple example is provided by the wave

equation

_u + 3u
_--_ _x = o (lO)

on the interval [-1,I] with inlttal condition u(x,0) and

boundary condition u(-l,t). Since this is not a periodic

problem, a spectral method based upon Fourier series in x

would exhibit extremely slow convergence: the Fourier coeffi-

cients decay only as fast as 0(k-I) in the general ease.

(The integration-by-parts argument given earlier fails, even
if the solution is infinitely dlfferentiable because the

boundary term in Eq. (8) is finite.) However, rapid conver-
gence as well as ef_lelent algorithms can be attained for

spectral methods based upon Chebyshev polynomials. These are

defined on [-I,I] by

T (x) ffi cos (n cos-Ix). (11)
n

The function

u(x,t) = sln a_(x-t) (12)

is one solution to Eq. (I0). It has the Chebyshev expansion

u(x,t) = _ Un(t) Tn(X) , (13)
n=O

where

1983025576-007



Un(t ) = 2c sin - ant) Jn(an) (14)
n

with

2 nffi0
c = (15)

n 1 n_ 1
J

and Jn(t) is the Bessel function of order n. The asympto-
tic properties of the Bessel functions imply that

nPun(t) + O as n + ® (16)

for all positive integers p. Note that this result holds
whether or not a is an integer. In contrast, the Fourier

coefficients of u(x, t) are

i iant sin u(_+k) i -taut sin r(a-k)(t) = 2--_ e a+k - 2--_ e a-k " (17)

For non-integer a these decay extremely slowly.

The change of variables

x ffi cos 0, (18)

the definition

v(0,t) ffi u(cos 0,t), (19)

and Fat. (11) reduce gq. (13) to

v(0,t) - , u (t) cos nO. (20)
n

n-0

Thus, the Chebyshev coefficients of u(x,t) are precisely the
Fourier coefficients of v(O,t). This new function is auto-
maritally periodic. If u(x,t) is infinitely differentiable
(in x), then v(O,t) will be infinitely differentiable (in O).
Hence, straightforward Integration-by-parts arguments lead to

the conclusion that the Chebyshev coefficients of an infinite-

ly differentiable function will decay exponentially fast.
\, Note that this holds regardless of the boundary conditions.

The effectiveness of this type of approximation is demon-

strated by the results in Table II. Shown there are the

errors at t - I for several approximations to gq. (I0) with
initial and boundary conditions based on Eq. (12) for a - 2.5.

1983025576-008
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(The explicit tlme-step used in these calculations has been
taken to be so small that time-dlscretization errors, but not

round-off errors, are negligible.) The results of a spectral

m;thod based on Fourier series have been included to emphasize

the importance of the proper choice of expansion functions.

Table II. N_x4mm,,-Error for a X-I)Hyperbolic Problem

Truncated Chebyshev Fourier Finite

N Series Spectral Spectral Difference

4 1.24 (0) 1.49 (0) 1.85 (0) 1.64 (0)

8 1.25 (-1) 6.92 (-1) 1.92 (0) 1.73 (0)

16 7.03 (-6) 1.50 (-4) 2.27 (0) 1.23 (0)
32 1.62 (-13) 3.45 (-II) 2.28 (0) 3.34 (-I)

64 1.79 (-13) 9.55 (-II) 2.27 (0) 8.44 (-2)

2.3. Implementation of Fourier Spectral Methods

The key to the implementation of Fourier spectral methods
is the Discrete Fourier Transform. Let a function u(x) be

represented by Its values uj = u(xj) at the collocation
points

= _2_ j = O,t, -.. ,N-1. (21):, xj N

The discrete Fourier coefficients of uj are

uk = _ uje k =- _ - + I,'", - I. (22)
J-0

. The inverse relationship is

N/2 - 1 ^ fkxjuj = [ uke j = o, 1,...,N-t, (23)
k=-N/2

and the orthngonalt"/ celatton is

_IN_I e±kXj _,.,,n__ , (24)

where

,, 1 k " £, £±N, _.:I:2N,''"

_ _k,£ = 0 otherwlse • (25) _

1983025576-009
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Note the d_fference between Eq. (24) and the orthogonality re-
lation for continuous Fourier series. In the latter case the

sum is replaced by an integral and the usual Kronecker delta
function appears on the right-hand side.

The counterpart of the periodicity condition
u(x+2_) = u(x) is

uj+ N = uj. (26)

Unlike the continuous case, discrete Fourier series also have

a periodicity requirement on the coefficients:

^ ^

uk+N = uk. (27)

This is an immediate consequence of Eq. (22). The connection
between the discrete and continuous Fourier coefficients [ol-

lows from Eqs. (2), (22), and (24) and is

OO
^

uk =" l Uk+£N. (28)
,,==__OO

All but the £ = 0 contribution to the sum are the aliases of

Uk, i.e., Fourier components which are indistinguishable from
uk on the discrete grid. These are a source of error in
spectral methods in addition co the error that arises from the
truncation of the exact Fourier series. It is Just such

allaslng terms that account for the differences between the
entries in columns 2 and 3 of Table I.

Here then are the details of the spectral method used for
the Table I results:

I) Given fj = f(xj) for J - 0,1,'",N-l, find the dis-
crete _burier coefficlents fk for k = -N/2,
-N/2+I,''',N/2-1. (Use Eq. (22) with f in place
of u. )

2 ) Set

- Ikl < ._/2

uk = . (29)
',, 0 k = -N/2

(This is the solution of Eq. (9) in terms of the
Fourier coefficients.)

4

3) Compute uj itself for J - O,I,'oo,N-1 from Its
discrete Fourier coefficients. (Use Eq-(23).)

I
F

1983025576-010
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The Fast Fourier Transform (FFT) is an efficient and

widely-available algorithm (even in assembly language) for _c-

compllshlng seeps (I) and (3). A broad survey of FFT's is

provided in [20]. The only slight complication is that stan-

dard versions of the FFT (such as the IMSL subroutine FFT2)

produce the coefficients for k = 0,1,'",N-I, The periodic-

_ ity relation given by Eq. (27) enables the desired coeffi-

cients to be extracted readily from the FFT output. The pe_"

odiclty relation also helps in using the FFT to perform _......3

such as those in Eq. (23).

The ease with which a direct solution is attainable for

this spectral discretlzation of Eq. (9) is exceptional. For

example, no efficient direct solution scheme exists for the

spectral solution of

(a(x,y) 8u) _ (b(x,y) _u)Tx + = f" (30)

One must, In general, resort to iteratlve schemes for its so-

lution. An essential element of these schemes is the explicit

evaluation of terms such as those appearing in Eq. (30). Con-

sider Just the first term. Given u(x,y) at the collocation

points, this term is evaluated by

I) computing 8u/_x by Fourier collocation,

2) multiplying by a(x,y), and

3) computing _/Sx(a(x,y)Su/_x) by Fourier collocation.

The differentiation occurrlt_g in step 1 Involves (with the y-

dependence suppressed) :

(i) using the FFT to compute the discrete Fourier coeffi-

cients uk for k = -N/2,-N/2+I,-'',N/2-1,

(li) setting

<A

! , (31)

vk= I 0 k--2_
^

(ii_) using the (inverse) F_T on vk to get _u/_x at the

collocation points.

The choice of V_N/2 calls for some explanation. Since

u(x) ^ is real, so too will be u-N/2- But only the real part

, of V_N/2 makes any effective contribution to _u/_x. If a
", derivative of higher-order is desired, then steps (i) to (ill)

still apply but with the appropriate power of ik appearing
^

as the multiplier of uk in Eq. (31).

The FFT enables the le -h_:,d side of Eq. (30) to be

i{ b

1983025576-011
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evaluated at all the N x N collocation points in O(N2£n N)

operations. For large N this compares unfavorably wlth the
finite difference cost of 0(N 2) for an N x N grid. However,

when Judged by the cost of equally accurate solutions the

spectral method is likely to be cheaper since it needs a

coarser grid (see Table I).
.J

2.4• Implementation of Chebyshev Spectral Methods

A Chebyshev spectral method makes use of : fln_te

Chebyshev series such as

N

us(x)= _ ,]nrn(_). (32) F
n=,O

The standard collocation points are

xj = cos _-jN J ffiO,I,''',N. (33)

N
^

uj = _ Un cos9_-IN' (34)
hi0

where uj is the approximation to u(xj). The inverse rela-
tlon is

N

^ cj Iun = --2- _ --- uj cOS _ , (35)
N_nj=0

where

(2 J = 0 or
I

• (36)
cj

(I t _ J < N-I

These last two sums may be evaluated by the FFT. Th_ standard

FFT, however, does complex arithmetic and ignores the symmetry

present in a cosine transform. The second appendix of [6]
describes how to make more efficient use of the FFT for

evaluating the sums In Eqs. (34) and (35). One may also use a

Fast Cosine Transform. A Fortran listing of one version is

given in [21].

The Chebv_nev collocation points are the extreme points

of TN(x). Note that they are not evenly distributed in x,
but rather are clustered near the endpoints. The _alleot
mes_. size scales as I/N2. While this distribution contLi-

butes to the quality of the Chebyshev approximation and per-
mits the use of the FFT In evaluating the series, it also

1983025576-012
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places a severe tlme-step llmitatfcn on e:piiclt rae,hods fee

evolution equations.

A Chebyshev spectral method for Eq. (I0) combines some

explicit time-dlscret[zation with an approximation to the spa-

tlal derivative which is based upon analytlcal differentiation

¢' of the Chebyshev series for u. Consider first the infinite

series, for which

u(x) = u T (x), (37)
n=0 n n

with the time dependence of u suppressed. Write the expan-

slon of the derivative as

u'(x) = _ u (1)T (x). (38)n n
n=,O

The goal is to relate the coefficients tn gqs. (37) and

(38). The starting polut is the recurslon relation

T'n+I (x) Tn-I (x) 2

n+l n-I - _- Tn(X), (39)
n

which follows from Eq. (II). Inserted into Eq. (38) this pro-
duces

_ Tn+I(x) r__1(x)
-"(_)-z/zI _(1)[._ ]n n n-I

n,,O

n+l

" _ 2_ T'(x)->__T_(_). (40)n 2n
n=l n,,1

But from Eq. (37)
oo

u'(x) " _' u T'(x). (41)
n n

n=1

Therefore,

~ c u(1) ~(1)2n u - - n ) 1 (42)n n-1 n-1 Un+l

The evaluation of the _u/3x term in the Chebyshev spec-

tral method for Eq. (10) consists of:

2

I) Given uj - u(xj) for J - 0,1,'-',N find the dis-
crete Chebyshev coefficients un for n - 0,1,''',N.
(lYseZq. (35).)

T

1983025576-013
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2) ,£et

_(I) O,+I =
(43)

o,

and compute un(l) for n = N-I,N-2,'" ,0 from

^ I = 2 ^
CnUn( ) u(l}n+2+ (v_l)Un+l" (44)

t
3) Compute _u/_x(x_) itself for J - O,I,.'',N from

its discrete OlebyshevJ coefficients. (Use the analog
of Eq. (34).)

Higher-order derivatives can be calculated by repeating step
(2) as often as needed. When the _FT is used for steps (l)
and (3) the cost of a derivative evaluation is O(N £n N).

Por the F_q. (I0) calculation, the derivative _u/_x is

not needed at the inflow boundary (x ffi-I) since the boundary

condition rather than the I_E is used to update uN. Note
that there is no need for a special formula at the outflow

boundary (x = +I). Although t_,e PDE is used to update uo,
the value of _u/_x at x - 1 is automatically available

from the O_ebyshev spectral calculation outlined above. In
concrast the second-order finite difference calculation used

for Table Ii employed the special formula of first-order
extrapolation at the outflow boundary.

As a general rule the correct numerical boundary condi-

tions for a spectral method are the same as the correct analy-

tical boundary conditions. The global nature of the approxi-

mation avoids the need for special differentiation formulae at
boundaries. At the same time spectral methods are quite un-

forglvl_g of incorrect boundary condi.lons. The inherent dis-

slp8tion of these methods le so low that bo,mdary errors

quickly contaminate the entire solution. In many fluid dyna-
mical applications the computational region must be terminated

at some @tnite, artificial bouud_ry. The difficulty at

"art._flcial'' boundaries is that ._nalytically correct, fully

nonlinear boundary conditions for systems are seldom known.
One example of a workable artificial boundary condition for

the guler equations is given i_ Section 5.4.

3. $1_CTPJkL_TICRID ITBRATIVE l_gl_OD5

Direct solutions of implicit spectral equations --
wP :her arising from elliptic problems or from implicit time-

disc_ettzations of evolution problems -- are rarely feasible.

I

I I
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Except in special cases the matrices representing spectral
apfroximations are full. Iterative methods are a practical

alternative because the requisite matrix-vector products can
be evaluated via the FFT.

3.I. An Flementary Examvle

An attractive lterative scheme for spectral equations
utilizes multigrid concepts. The basic description of spec-

tral multigrid methods for linear, elliptic equations is given
in [22] and [23]. Additional considerations for the non-

linear, potential flow application are given in [17]. A brief
summary of these concepts is given here since they play a

major role in the spectral transonic potential flow calcula-

tions discussed tn the following section.

The fundame_,tals of spectral multtgrid are perhaps
easiest to grasp for the simple model problem

d2u " ..
--- f (45)

dx2

on [0,27] with periodic boundary conditions. The Fourier

approximation to the left-hand side of Eq. (45) at the collo-
cation points is

N12-1

[ p2 UpeipXj . (46)
p= -N/2+1

The spectral approximation to Eq. (45) may be expressed as

LU = F, (47)

where

U = (u0'ul'''''_'-l)'rw (48)

F = (f0,fl,''',fN_l), (49)

and L represents the Fourier spectral approximation to
- d2/dx 2.

A Richardson's iteratlve scheme for solving Eq. (47) is

V + V + u(F - LV), (50)

1983025576-015



14

OF,_ ',..

OF FCC,' "_._.-,.__.

where _ is a relaxation parameter, on the right side of the
replacement symbol (*) V represents the current approxt_ation
to U, and on the left it represents the updated approximation.
The eigenfunctlons of L are

 j(p) = e • , (51)

with the corresponding etgenvalues

X(p) p2= , (52)

where J - 0,1,'",N-I and p - - N/2+1,''',N/2-1. The

index p has a natural interpretation as the frequency of the

elgenfunction.

The error at any stage of the Iterative process Is V - U;
it can be resolved Into an expansion in the elgenvectors of

L. Each iteration reduces the p'th error component to v(X )

times its previous value, where P

; v(1) = 1 - wl. (53)

" The optimal cholce of _ results from minimizing Iv(_)l for

¢ [Xmin' XmaxJ' where 2_in = 1 and Ima x - N2/4. (Oneneed not worry about the p eigenfunctlon since it corre-

sponds to the mean level of the solution, which Is at one's

disposal for thls problem.) The optimal relaxation parameter
for this slngle-grld procedure is

2 (54)
" _SG = X + "

max Imtn

It produces the spectral radius

m

max Xmin (5 5)
PSG = X + X "

max min

Unfortunately, PSO = 1 - 8/N2 , which implies that O(N2)
iterations are required to achieve convergence.\

This slow convergence is the outcome of balancing the
damping of the lowest-frequency eigenfunctlon with that of the
highest-frequency one in the minimax problem described after

gq. (53). The multlgrid approach takes advantage of the fact

that the low-frequency modes (Ipl < N/4) can be represented

1983025576-016
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Just as well on coarser grids. It settles for balancing the

middle-frequency eigenfunctlon (Ipl = N/4) with the highest-
frequency one (Ipl = N/2), and hence damps effectively only

those modes which cannot be resol,ed on coarser grids. In

Eqs. (54) and (55), _mln is repla__ed with _mid = _(N/4).
The optimal relaxation parameter in this context is

2
MG ffi t + X " (56)

max mid

The multigrld smootl,ing factor

X
max Imlcl

_MG " I + I (57)
max mid

measures the damping rate of the hlgh-frequency modes. In

this example _MG = 0.60, independent of N. The price of
this effective damping of the hlgh-frequency errors is that
the low-frequency errors are hardly damped at all. However,

on a grid with N/2 collocation points, the modes for
IPl E iN/B, N/4] are now the hlgh-frequency ones. They get

damped on this grid. Still coarser grids can be used until

relaxations are so cheap that one can afford to damp all the
remaining modes, or even to solve the discrete equations

exactly •

Let us consider Just the interplay between two grids. A

: general, nonlinear fine-grld problem can be written

Lf(u f) - Ff. (58)

The shift to the coarse grid occurs after the fine-grld
- approximation Vf has been sufficiently smoothed by the

. relaxation process, i.e., after the hlgh-frequency content of

the error Vf - Uf has been sufficiently reduced. The

related coarse-grid problem is

LC(u c) = Fc, (59)

where

Fc = R[Ff - Lf(Vf)] + eC(RVf). (60) !

'I

\ The restriction operator R interpolates a function from the

fine grid to the coarse grid. The coarse-grld operator and

solution are denoted by Lc and Uc, respectively. After an
adequate approximation Vc to the coarse-grld problem has "

i
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been obtained, the fine-Rrid approximation is corrected via

Vf + Vf + P(Vc - RVf). (61)

The prolongation operator P interpolates a function from the
coarse grid to the fine grid.

3.2. Interpolation Operators

The spectral multtgrid interpolation operators for perio-
dic coordinates amount to trigonometric interpolation: for

example, given a function on a coarse grid, compute the dis-
crete Fourier coefficients and then use the resulting discrete
Fourier aeries to construct the interpolated function on the
fine grid. This may be accomplished by performing t_ FFC's.
Interpolation for non-periodic coordinates employs Chebyshev
series in an analogous fashion. Detatl,:d descriptions of the
Interpolation operators are available in [17] and [23].

3.3. Coarse-Grid Operator

A typical term in the class of problems containing
potential flow is

<62)

The discrete operator which represents its fine-grid spectral
approximation is

Lf = 0 A O, (63)

where O is a spectral first-derivative operator (either
Fourier or Chebyshev) and A is the diagonal matrix

Ajk = a(uj,xj)6j,k. (64)

Many multlgrld investigators have advocated choosing the

coarse-grld operator so that

Lc = RLfP. (65)

Both the Fourier and the Chebyshev flrst-derlvatlve operators

satisfy

0c = R0fF. (66)

I
i
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However, Eq. (65) itself is not satisfied if the coarse-grld

analog of Eq. (63) is used to define Lc, except in the

trivial case for which a(u,x) is a constant. On the other

hand, much of the efficiency of the pseudospectral method is

lost if Eq. (65) is used to define the coarse-grid operator.

The most satisfactory compromise seems to be using F_. (03)

I_ but with the restricted values of a(uj,xj) in place of the
polntwlse values.

4. THK COK][_KSSYBLE POTKNTIAL EQUATION

The computational results of the past decade have demon-

strated that fairly accurate pred_ctions for a number of tran-

sonic flows of practical interest can be made on the basis of
the compressible potential equation. This nonlinear equation

is of mixed elllptlc-hyperbollc type, precluding purely ellip-

tic or purely hyperbolic solution procedures. The numerical

solution of the potential equation became feasible only after

the introduction of type-dependent differencing by Murman and

Cole [24]. The review by Hall [25] provides an exhaustive

history of computational approaches to the potential equation.

Until the recent work of Streett [16], the dlscretizatlon

procedures for the potential equation were invariably based on
low-order finite difference or finite element methods.

Streett used a spectral discretization of the full potential

equation and obtained its solution by a single-grld iteratlve

technique. The application of spectral multlgrld techniques

by Streett, et al. [17] produced a dramatic acceleration of

the Iterative scheme. Even in its relatively primitive state

the spectral multigrid scheme is competitive, and in some

cases unequivocally more efficient, than standard finite dlf-
ference schemes •

_, 4. I. The Reduced Potential Problem

" Streett solved the two-dimenslonal full potential equa-

tion (applying boundary conditions at the actual airfoil sur-

face). In this work a numerical conformal marping (also gen-

erated by Fourier techniques) was used to transform the air-

loll onto the unit circle. Moreover, the calculations were

actually performed in terms of the reduced potential G, which

is defined by

c - - (R cose - taCI tane], (67)

'_ where _ is the potential, R and @ are the computational

polar coordinates, E is the circulation and M is the Mach

i number at infinity. The reduced potential is periodic in 8 .
_ and it satisfies
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3 @G, 3 p

TE[RpTEJ+ _(_ _) " o, (68)

along with

@G= 0 at R = I, (69)--. 3R

C + 0 as R�®, (70)

and the Kutta condition. The density is given by the isentro-

pic relatlon 1

p [1 Y21 M2( 2 2 IT-1= --- _ qr + q8 - I) ; (71)

the ratio of specific heats is denoted by Y, the veloclty
components in the physical (r,B) plane are

1 3.

qr = H 3R (72)

1 3_

qo = RH 3@ ' (73)

and the Jacobian between the complex physicaloplane (z = re i0)
and the complex computational plane (a = Re i ) is

H " • (74)

4.2. Discretization

- The spectral method employs a Fourier series representa-

tion in O. Constant grid spacing in 0 corresponds to a

convenient dense spacing in the physical plane at the leading
and trailing edges. The domain in R (with a large, but
finite outer cutoff) is mapped onto the standard Chebyshev do-

main [-1,1] by an analytical stretching transformation that

clusters the collocation points near the alrfoll surface. The

stretching is so severe that the ratio of the largest-to-

smallest radial intervals is typically greater than I000.

', The most expedient technique for dealing with the mixed

\ eUlptlc-hyperbollc nature of the transonic problem is to use'\
the artificial density approach of Hafez, et al. [26]. The
orlglnal artificial density is

. p - _6p (7s)

t'i
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oFPoowith

= max{O,1- 1--} (76)
M2 '

where M is the local Mach number and 6p is an upwind

first-order (undivided) difference. The spectral calculations

employed a higher-order artificial density formula. The
spectral method also required a weak filtering technique to

deal with some high-frequency oscillations generated by the
shock. Details are available in [16].

4.3. Spectral Multigrld Solution Scheme

Let the spectral discretiz:_tion of Eqs. (68) - (70) be

denoted by

H(U) = O, (77)

and define

_M
J(U) l .=_ (]J). (78)

A suitable relaxation scheme for the spectral multigrid solu-

tion of transonic potential flow is based upon approximate

factorization techniques similar to those used in finite dif-

ference discretizations [27], The Jacobian J(U) is split

into the sum of two operators Jx(U) and Jy.(U), each invol-
ving derivatives in only the one coordinate _irection Indlca- =
ted by the subscript. The most straightforward spectral ap-

proximate factorlzation scheme is

[al - Jx(V)] [el - Jy(V)]AV = _M(V), (79)

where V is the last estimate of U, and V + AV is the next

estimate. This is commonly referred to as AFI for the tran-

sonic problem. For second-order spatial dlscretizatlons the

term [el -Jx(V)] leads to a set of trldiagonal systems, one
for each value of y. The second left-hand side factor pro-

duces another set of trldlagonal systems. For spectral dis-

cretlzat£ons, however, these systems are full; hence, Eq. (79)

. is still relatively expensive to invert. The spectral factor-

izatlon scheme makes the additional approximation of replacing

Jx and Jy with their second-order finite difference

analogs, denoted by Hx and _, respectively:

[al - Hx(V)] [al - Hy(V)]AV - a)aM(V). (80)
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For purely finite difference approximations some analy-
tical results are available for selecting optimal values for
the parameters _ and _ [28]. No similar results are yet

avallable for the spectral approximation. By analogy wlth the

finite difference case _ was chosen to be of order unity and

a sequence of a's was selected In a range [a_,ah] by the

, rule k-I

= -- , (81)

where K denotes the number of distinct a's. The choices

of a_ and ah were based In part on estimates or the eigen-
value range of the discrete operators and In (much greater)

part by trial and error. Fortunately, the AFI scheme is not
very sensitive to _hese parameters. This basic iteratlve

scheme may be employed In either a slngle-grld or a multlgrld

context. In the latter case the parameters a_ and ah
should be chosen separately for each grld to optimize the

hlgh-frequency damping ....

The spectral multlgrid solutions of Streett, et al., used

three different fine grids (with the coarser levels In

parentheses): 16 x 32 (12 x 16 and R × 8), 16 x 48 (14 x 32,
: 12 x 16 and 3 x 8) and 18 x 64 (16 x 48, 14 x 32, 12 x 16 and

8 x 8). Note that in passing to a coarser level the grld Is

, typically reduced by less than a factor of 2 in each
coordinate direction. This choice leads to a significant

improvement over the standard grlddlng for the spectral

_ potential flow problem, especially In the supercrltical regime
where the solution has large hlgh-frequency content.

All the spectral multlgr!d results were obtained with the
same fixed schedule: start on the finest grid, work down to

the coarsest grld and th_n back up to the finest grid; on the

way down there Is ! sweep though the (three) parameter

sequence and on the way up there are 2 sweeps.

4.4. Airfoil Exsm_

The flc_ past an NACA 0012 airfoil at 4° angle of attack

and a freestream Hath number of 0.5 is a challenging s-bcrl-

tlcal case. _he airfoil produces a fairly large llft coeffl-

cient at these conditions and the surface pressure distribu-

tion shows a sharp suction peak near the leading edge. Since
the local Hach number In this peak is nearly I, compressibili-

ty effects are substantial.

Nevertheless, the spectral solution on a relatively

' coarse grld captures all the essential details of the flew.
The surface pressure coefficient from the spectral code _AFSP

[17] using 16 points in the radial (R) direction, and 32

points in the azimuthal (@) direction Is displayed in Flg. I.
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Figure I. Spectral (triangles) and finite difference (solid
llne) surface pressures for a aubcrltlcal _low.

The symbols denote the solution at the collocation points.
For comparison, the result from the finite difference, multi-

grid, approximate factorization code FLO36 [29] is shown as a

solid line. The grid used in the benchmark finite difference

calculation is so fine (64 x 384 points) that the truncation

error is well below plotting accuracy. The FL036 and MNAFSP

results are identical to plotting accuracy. The spectral

computation on this mesh yields a lift coefficient with
truncation error less than I0-_. Spectral solutions on a

16 x 32 grid are thus of more than adequate resolution and

accuracy for subcrltlcal flows.

In Figure 2 are shown convergence histories from FL036,
MGAFSP, and the finite difference, approximate factorlzation,

single-grld code TAIR [27]. Meshes which yield approximately

equivalent accuracy were chosen. The surface pressure results

are the same .t° plotting accuracy, the llft coefficient is

converged in the third decimal place, and the predicted drag
coefficient is less than .001. (Actually, the spectral result
is an or4er o¢ magnitude more accurate than these limits, but

\ the TAIR result barely meets them.)

A lifting sup-:rcritical case is provided by the NACA 0012

airfoil at M = 0.75 axed a = 2°. This yields a section

lift coefficient of nearly 0.6. A shock appears only on the #_
upper surface for these conditions and is rather strong for a

potential calculation; the n,,rmal Mach number ahead of the "_
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shock is about 1.36. Ltftlng supercrltical cases are

especially difficult for spectral methods since the solution

will always have significant content in the entire frequency
spectrum: the shock populates the highest frequencies of the

grid and the llft is predominantly on the scale of the entire

domain. An iterative scheme therefore must be able to damp
error components across the spectrum.

Surface pressure distributions from MC.AFSP, TAIR, and
FLO36 are showP in Figure 3. The respective computational

grids are 18 x 64, 30 x 14q, and 32 x 192. The latter two

are the default grids for the production finite o_fference

codes. Spectral results obtained by trigonometrically inter-

polating the 18 x 64 grid results onto a much finer grid are
included alongside the results at the collocation points.

This reveals the wealth of detail that is provided by the

rather coarse spectral grid. The shock predicted by TAIR is
far more rounded and smeared than that of FLO36, reflecting

the coarser mesh and larger artificial viscosity used in the

former. The TAIR result shown is also only correct to one

decimal place in lift as compared with a finer-grid result.

Convergence histories for these three cases are shown it,

Figure 4 alo,,gwith the results for MGAFSP on a coarser grid
(16 x 48).

I.

'-" O,

log,_','_r',L

-3." "_ _--_+...._G RIDS
\\ FL036 MGAF:3P

-.I 'rAIR \\ 32 x l,q_' 16 x 48

]0 x 14,9 15 GRIDS -iGRIDS
I _ , 't •

ZO, 40 60. 80. tO0. t20.

T (sec- CY175)

.'_, Figure 4. MaxJLmum residual versus machinetime for a supererltlcal flow.
%

5. THE EOLER EQUATIONS

The _ler equations undoubtedly provide more information
than the potential flow approximation. The numerical diffi-
culties in solving the Euler equations are well known. The
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problems tend to be even more severe wit,_ spectral than finite
difference methods. Explicit time-stepping schemes are

especially costly because the Chebyshev collocatlon points

have a very small spacing near the boundary. The numerical
boundary conditions, particularly for artificial boundaries,

must be sophisticated because spectral methods are extremely
_, sensitive to improper boundary treatments. The oscillations

arising in shock-capturing methods are quite troublesome

because the global nature of spectral approxlmatlons spreads
the oscillations over the entire domain.

Spectral methods for compressible flows are still so
novel that most of these difficulties remain to be surmounted.

However, at least the shock-lnduced oscillations can be

avoided by resorting to shock-fitting techniques. Here the
shock front is a computational boundary whose shape and motion

are generated during the calculation. Since the flow within

the computational domain is smooth, there is reason to expect

a shock-fltted solution to be highly accurate. Shock-fltted
spectral solutions to the P,uler equations were first presented

by Salas, et al. [18]. Results for related problems were sub-

sequently given by Zang, et al. [30]. Additional examples and
more numerical details are contained in [19]. The essential

features of these investigations Follow.

5.1. The Shock Interaction Problem

"_ PHYSICAL PLANE

Xt XS
• •

• I

• I

v • • P P J,
N • / J _' "

I d • ' ' P P v , ,

I1_-IFLOW " _ " -. ..... _...,.. . , , , ,

• •

• •

LEFTCOMPUTATIONAL SHOCK DOWNSTREAM
BOUNDARY WAVE FLOW

l_Lsure 5. Nodel problem in the physlcal d_In a short

t/me after the start of the ealcculattoo.
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A model problem which has been used to study the
interactlon of a shock wave with a vortex [31] or with

idealized turbulence [32] is illustrated in Figure 5. At

time t = 0 an infinite, normal shock at x = 0 s=parates a

rapidly moving, uniform fluid on the left from the fluid on

the right which is in a quiescent state except for some
: specified fluctuation. The initial conditions are chosen so

that in the absence of any fluctuation the shock moves

uniformly in the positive x-dlrection with a Mach number

(relative to the fluid on the right) denoted by Ms. In the
presence of fluctuations the shock front will develop ripples.

The shape or the shock is described by the function Xs(Y,t_.
The numerical calculations are used to determine the state of

the fluid in the region between the shock front and some

suitable left boundary xL(t) and also to determir, the
motion and shape of the shock front itself.

_Le physical domain in wbich the fluid motion is computed

is given by

xL(t) _ x _ Xs(Y,t)

_o_ < y < ® (82)

t > O.

The change of variables

x - XL(t)
X =

x (y,t) -" XL(t)s

I
Y =7 [I + tanh(ay)] (83)

T I t_

produces the computational domain

0_X _ I

O'_Y < 1 (84)

T) O.

The stretching parameter a ts typical of order 1.

The fluid motion is modeled by the two-dimenslonal Euler

equatlons. In terms )f the computational coordinates these
are
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0T + 8 0 x + ¢ Oy = o, (85)

where

O = [P,u,v,S], (86)

m

U YXx TX 0Y
a2
--X U 0 0

x

B = 32 , (87)
--X 0 U 0
Y y

0 0 0 U _

and

- V yY YY 0 "
x y

a2 .-.
--Y V 0 0
Y x

C = a2 . (88)
--Y 0 V 0
¥ y

0 0 0 vw

The contravariant velocity components are given by

U _-X + uX + vX

and t x y (89)
V = + uY + vY .

Yt x y

A subscript denotes partLal differentiation with respect to

the indicated variable. P, a, and S are the natural

loga_ithm of pressure, the sound speed, and the entropy
(divided by the specific heat at constant volume),

respecti" oly, all normalized by reference conditions at
downstream infinity; u and v are velocity components in

the x- and y-dlrectlons, both scaled by the characteristic

velocity defined by the square root of the pressure-denslty

ratio at downstream infinity. A value Y = 1.4 hae been
used.

5.2. DJscretlzation
i

Let k denote the time level and let At be the time-

step increment. The time dlscretlzation of Eq. (85) Es then
as follGws:

= [i - _tLk]0k, (90)

I
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Qk+1 --1/2[qk + (I - AtL)Q], (91)

where the spatial operator L represents an approximation
to B 8/BX + C B/BY. In the spectral method, the solution

Q is first expanded as a double Chebyshev series,

M N

Q(X,Y,T) = _ _ Qpq(T)r (_)Tq(n) (92)
p=0 q=0 P '

where

= 2X - 1 and n = 2_ - I, (93)

and Tp and Tq are the Caebyshev polynomials of degrees
p and q. The derlvatives appearing in the spatial operators
are then evaluated as

M N (I,0)TOx = 2 Z ]. O (_)T (n) (94)
p=0 q::O Pq P q .

and

M M (o I )T
Qy = 2 _ _ 0 ' (_)Tq(q). (95)

p--0q=O Pq P

The Chebyshev coefficients of the X-derivative are denoted by

V Q(I,0) They are evaluated by the recursion formulae of Eos.pq • •

(43) and (44) for each q. The Y-derlvatlve is handled in a
similar fashion.

Spectral methods for all but constant-coefflclent, linear

problems require some sort of weak filtering for stability.

For the calculations presented below, the upper third of the
- frequency spectrum of the _olution was filtered every 50 time-

. steps or so. Details are gicen in [19].

5.3. Shock Fittin_

The Rankine-Hugonio t conditions are used both to

determine the flow variables (P, u, v, and S) immediately

upstream of the shock and to determine the shock pos_.tion.
Use the suhscrlpts ] and 2 to denote the variables on the

downstream (right) and upstream (left) sides of the shock.
Since all the quantities on the downstream side are

prescrlhed, the flow variables on the up,,tream side follow
'., routinely from the Ranklne-Hugonlot relations. Of course

" these relations must be employed in a manner which accounts

tot the shock vetoclty and curvature.

A few preliminary definitions are needed for the equation
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which determines the shock position as a function of the
computational time T. Let N be the unit normal to the
shock front. Its components in the physical plane are

^ (l,3Xs/_y)
N = . (96)

-._," _ + (_}Xs/_y) 2

Let -Us denote the normal velocity of a point on the shock.
Then

^

u = u N (97)--S 8

and xs(Y,T) can be obtained by integrating wlth respect to

T the proJectlov of us onto the X-dlrectlon. If t,e
incoming normal velocity relative to the shock is denoted by

UreI, then

Urei = ¢tI • N - us (98)

and the relative Mac', number Is

:. Hrel = Urel/al" (99)
k

f

The pre_ent numerical method presumes that Hre I is always
greater than I.

The Ranklne-Rugonlot relations imply that

el -_ �£n• (I00)

The equation for the shock acceleration is obtained by

differentiating Eqs. (99) and (100) and then combining the
results to obtain

aI

u IVMreI- -_-; - Mrelal,T,(101 )s,T = A 2YHreI [P2,T- PI,T ) .2 Y-I_

where

^ A

'_ A = _I,T " N +_I" NT" (102)

The time derivatives on the rlght-hand-slde of gq. (I01) are
obtained from Eq. (85) using spectral approximations to the

' f
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spatial derivatives. The shock velocity is obtained by

integrating Eq. (101) with respect to T.

The collocation grid in the computational plane is fixed
and uniform. Since the shock _ront moves to the right in the

course of the calculation, the corresponding discrete grid in

i" the physical plane is expanding. Thus, the effective resolu-
tion in the x-directlon continually decreases during the

evolutlcn. Eventually the resolution of any calculation will
become inadeouate and the results will no longer be reliable.

Fortunately, in many situations the important information can

be extracted before this occurs, especially if the initial
g_id is taken to be a fine one.

5.4. Boundary Conditions

The correct boundary conditions at both the left and

right boundaries depend upon the relative shock Mach number.
If T ffi1.4 and M > 2.08, then the flow behind the shock is

supersonic. In this case both boundaries are supersonic in-
flow boundaries and it is apprcprlate to prescribe all varia-

bles there. If Ms < 2.08, then these boundaries are subsonic
inflow ones. The ad,-Isable procedure here is to base the nu-

merical boundary conditions on the llnearlzed characteristics
of the Euler equations. At the left (subsonic) boundary the

(llnearlzed) characteristic variable corresponding to the out-

going characteristic direction is

R- = P - -_ u. (I03)
a

Similarly,
R+ = P +--Y t- (I04)

a

corresponds to the outgoing characteristic direction at the
right {subsonic) boundary.

A set of successful numerical boundary conditions on the
left _s obtained by first calculating preliminary values of

sll quantities at the left boundary and then incorporating the

given values of S, v, and R+ as

,q,,$
given

V = V
given

(105)

+
a glven

Y
P ---,, =P ---u .

a prellm a prelim
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Thus, the PDE is used to update the appropriate characLe_lattc
combination of variables at the boundary. The characteristic
analysis is given in [33]. The particular numerical boundary
condition was advocated in [34]. For the right boundary a
similar characteristic correction procedure can be incor_ora-

ted into the evaluation of the P2 T term in Eq. (I01). This
characteristic affects the shock v_loclty.

At the top and bottom boundaries (which have been

stretched to infinity in the physical plane) zero disturbance
boundary conditions are enforced. This is certainly Justifi-

able whenever the fluctuations decay rapidly in these direc-

tions. Rowever, there will be spurious reflections from the
upper and lower boundaries IE the disturbances extend that Ear

out. The spurious reflections that might emanate from these
boundaries need not pose a serious problem since the

decreasing resolution resulting from the shock motion already
limits the useful duration of a calculation.

5.5. Shock Interaction Examples

Salas, et al. [18] used the algorithm outlined above to
compute the interaction of a shock with a single vortex, a hot

spot and a Karman vortex street. They also gave comparisons
with results _rom a s__milar second-order finite difference

method. The spectral method produced virtually identical

results with only I/7 as many grid points.

' • l 'i I ' ! , |' I =

• • L I i I I l L

l_Igure 6. Initial entropy contours of a 25g hot spot
about to interact with a Nach 1.2 shock.

, A Mach 1.2 hot spot calculation is illustrated here in

Figures 6 and 7. The hot spot situated in the quiescent Eield
on the right in Figure 6 has the temperature distribution z

given by _ .

T = k expJ-[(X-Xo)2._ + (y-yo)2]/2o2),_. (106)

l t, _ ..... "_'4t,,
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where k = 0.25, o = 1.25, x0 = 0.5 and YO ffi0. The initial
shock position is x = 0. Figure 7 displays the velocity

field at time t = 0.52, after the shock wave has passed over

the hot spot. The shock front appears a the solid llne in

both figures.

s • •

..... _ t i i i ,,. ,,. _t t

.... " " '_ % % L i " ,,, t _'

= o . . . _ . _ ..e.D,_..._-.P.,..t,_ _ d,

t f °4 _k . ,, l

. , . . • * e S ql • . i _
• , , • e , • • " • d L

¢ * * * * • * • • 6 , L

• * • * * . . . . . •

Ptgure 7. Perturbe_ _pstrean velocity vectors
after the shock-hot spot interaction.

,- 15 --
r_

12 -- __m o

>_ O --
__ O

£_)

0 i i .I , i I J ,
0 30 60 SO

I NCI DENT ANGLE

Ptsure 8. Spectral (circles) and finite difference
(squares) results for vorticity rave

:, mapllfication versus Incldeuce augle, the
,, solid llne is the linear theory prediction.

A sample of the spectral _e_ults of Zang, et al. [30] for 2
shock-turbulence interactions is given in Figure 8. This is a

comparison of the computed, nonlinear amplification of Inci- "

dent Mach 3 vortlcity waves with the linear theory predic-
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tions. Pigure 5 shows the result of a large amplitude 30 ° in-
cident vortlcity wave interacting with a Hach 1.5 shock. The

spectral and finite difference results are comparable even
though the spectral results were produced on a far coarser

grld -- 32 x 8 versus 64 x 32.

Although the present spectral calculations are more effi-

cient than the finite difference ones in terms of storage,

they do not yet offer a clear advantage in terms of machine

time. The culprit Is the severe explicit tlme-step restric-
tion for the spectral method. A robust means of surmounting

this restriction Is perhaps the most pressing need for spec-
tral methods for evolution problems.

P
5.6. The Blunt Body Problem

The classical problem of a blunt body in a supersonic

stream has been an ideal test problem for numerical methods as

it provides a relatively simple well-posed transonic problem --
with nontrlvlal inltlal and boundary conditions. Llke most

common methods the spectral method of _ussalnl, et al. [19]
obtains the steady state solution as the time asymptotic

solution of the unsteady Euler equations which are written In

the cylindrical polar coordinate (r,8) system. The physical

domain of interest consists of the known body r - rb(8), the

unknown shock location r = rs(0,t) , the axis of symmetry
(the front stagnation streamline 8 = n ) and the outflow

boundary 0 = _- _max" For the purpose of shock fitting,
the coordinate transformation

r- rb(0)
X-

rs(O,t) - rb(O)
(107)

max

is introduced so that the shock wave and the body are
coordinate lines In the transformed domain. The transformed
equations of motion, in the notation of the previous problem,
are

0T + B QX + C 0y + R - 0, (108)

where

U 7Xr (Tlr)X 0 0

(a2/y)Xr U 0 0
B = , (109)

(a2/y) (I/r)X0 0 U 0

0 0 0 LT

,y-- #
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i

- V VYr (Y/r)¥o 0 "

(a2/Y)Yr V 0 0
C _ , (110)

(a2/T) (1/r)Y 0 0 V 0

I 0 0 0 v

and

2

R = [y u v uv o] (III)r _ r _ r t

with

U = X + uX +VX or
t r (112)

V =Xy
r O"

The flow field variables are expanded In double Chebyshev . o
series, and the solution technique is the same as for the

previous problem.

The shock boundary r = rs(O,t) (i.e., X = I) Is computed
using Ranklne-Hugonlot Jump conditions and the compatibility

equation along the incoming characteristic from the high pres-

sure side of the shock. At the symmetry llne 0 - _ (Y = O)

the O-component of velocity v is set equal to zero. On the

body r = rb(O) (i.e., X = 0), the normal component of

velocity u is zero. _max Is chosen so that the outflow

boundary Y = I is supersonic, and hence no boundary

conditions need be imposed.

LOCAL MACH NUMB[R

- 1M_,=4

__D..j .,¢*.

Figure 9. Spectral solution on an 8 x 8 grld for a
circular cylluder in a Math 4 uniform stress.
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Figure 9 shows the _ach number contours and the velocity
vectors for a circular cylinder in a unifo'n stream at M = 4.

The resu]ts are found to be in very goo. agreement w_h the
tabulated values given in [36]. (The grid is so coarse that

the contour plotter produces Jagged lines.) Figure 10 gives

the results from the linearly-sheared stream. Even on a very

_" coarse grid the spectral method captures the recirculatlng

region.

M = 18 LOCALMACHNUMBER VELOCITYVECTORS

J71.,/_

M = 10

l_gure 10. Spect_" _olut_on ou in 8 x 8 grid for a
circular cyllnder _n a linearly-sheared stream.

The explicit tlme-step restriction is a problem here as
well, for neither spectral solution was run to a truly

acceptable steady-state.

Techniques are now available for obtaining viable

spectral solutions to some compressible floe problems on grids
far coarser than those needed for comparable finite difference

solutions. The greatest success for shock-cap_urlng spectral
methods has been for potential flow. Far more sophisticated

filtering techniques than are presently available appear

necessary for cuccessful shock-capturlng in the context of the

Euler equations. However, when the shock is fit rather than
captured, the Euler solutions contain no discontinuities and

thus spectral solutions might be expected to yield exponentlsl
'_ convergence.
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